The Bureau of Economic and Business Research (BEBR) has been making population projections for Florida and its counties since the 1970s. This report presents our most recent set of projections and describes the methodology used to construct those projections. To account for uncertainty regarding future population growth, we publish three series of projections. We believe the medium series is the most likely to provide accurate forecasts in most circumstances, but the low and high series provide an indication of the uncertainty surrounding the medium series. It should be noted that these projections refer solely to permanent residents of Florida; they do not include tourists or seasonal residents.

State Projections

The starting point for the state-level projections was the decennial census count for April 1, 2020. Because the detailed census counts by age and sex are not yet available, we used the BEBR age and sex estimates for April 1, 2020, which were controlled to the Census 2020 count of total population. Projections were made in one-year intervals using a cohort-component methodology in which births, deaths, and migration are projected separately for each age-sex cohort in Florida.

Survival rates were applied by single year of age and sex to project future deaths in the population. These rates were based on Florida Life Tables for 2012–2018, using mortality data published by the Office of Vital Statistics in the Florida Department of Health. We adjusted the survival rates for 2020–2027 to make them consistent with recent mortality trends, and to align the projected deaths with those from the State of Florida’s Demographic Estimating Conference (DEC) held February 10, 2023. After 2027, we made small adjustments to the survival rates based on projected changes in survival rates released by the U.S. Census Bureau.

Domestic migration rates by age and sex were based on Public Use Microdata Sample (PUMS) files from the 2011–2019 American Community Survey (ACS) 1-year estimates and 2015–2019 ACS 5-year estimates. We calculated an average of those two sets of migration estimates; projections based on input data from more than one time period tend to be more accurate than those based on a single time period. By combining 1-year ACS estimates, which are more current, with 5-year ACS estimates, which are more stable, we make use of the different strengths of each type of ACS data.

We applied smoothing techniques to the age/sex-specific migration rates to adjust for data irregularities caused by small sample size. The smoothed in- and out-migration rates were weighted to account for recent changes in Florida’s population growth rates. Projections of domestic in-migration were made by applying weighted in-migration rates to the projected population of the United States (minus Florida), using the most recent set of national projections produced by the U.S. Census Bureau. Projections of out-migration were made by applying weighted out-migration rates to the Florida population. In both instances, rates were calculated separately for males and females for each age up to 90 and over. The distribution of foreign immigrants by age and sex was also based on averages of the patterns observed over the same time periods using the same ACS data sets as for domestic migration. Again, we smoothed the estimates to account for irregularities in the age/sex distribution of immigrants.
Projections were made in one-year intervals, with each projection serving as the base for the following projection. Projected in-migration for each one-year interval was added to the survived Florida population at the end of the interval and projected out-migration was subtracted, giving a projection of the population age one and older.

Births were projected by applying age-specific birth rates (adjusted for child mortality) to the projected female population. These birth rates were based on Florida birth data for 2012–2018 published by the Office of Vital Statistics in the Florida Department of Health. They imply a total fertility rate (TFR) of 1.75 births per woman. These rates were reduced in the short-term projections to make them consistent with recent fertility trends, and to align the projected births with those from the February 10, 2023 DEC. The long-term projections imply about 1.80 births per woman.

The medium projections of total population for 2023–2027 were adjusted to be consistent with the state population forecasts for those years produced by the February 10, 2023 DEC. None of the projections after 2027 had any further controls.

In the addition to the medium projections, we also created low and high projections for Florida. The low and high projections for the state should not be considered as low and high growth scenarios; rather, they represent an indication of the uncertainty surrounding the medium projections. The range was based on average projection errors of previous BEBR state-level projections.

In this publication, we provide projections for 2025, 2030, 2035, 2040, 2045, and 2050. State projections for other years are available by request.

County Projections

The cohort-component method is a good way to make population projections at the state level but is not necessarily the best way to make projections at the county level. Many counties in Florida are so small that the number of persons in each age-sex category is inadequate for making reliable cohort-component projections, given the lack of detailed small-area data. Even more important, county growth patterns are so volatile that a single technique based on data from a single time period may provide misleading results. We believe more useful projections of total population can be made by using several different techniques and historical base periods. For counties, we started with the population estimate constructed by BEBR for April 1, 2022. We made projections for each county using five different techniques in five-year increments. The five techniques were:

1. Linear – the population will change by the same number of persons in each future year as the average annual change during the base period.
2. Exponential – the population will change at the same percentage rate in each future year as the average annual rate during the base period.
3. Share-of-growth – each county’s share of state population growth in the future will be the same as its share during the base period.
4. Shift-share – each county’s share of the state population will change by the same annual amount in the future as the average annual change during the base period.
5. Constant-share – each county’s share of the state population will remain constant at its 2022 level.

For the linear and share-of-growth techniques we used base periods of two, ten, and twenty years (2020–2022, 2012–2022, and 2002–2022), yielding three sets of projections for each technique. For the exponential and shift-share techniques we used base periods of five and fifteen years (2017–2022 and 2007–2022), yielding two sets of projections for each technique. The constant-share method was based on data for a single year (2022).

This methodology produced eleven projections for each county for each projection year (2025, 2030, 2035, 2040, 2045, and 2050). From these, we calculated five averages: one using all eleven projections (AVE-11), one that excluded the highest and lowest projections (AVE-9), one that excluded the two highest and two lowest projections (AVE-7), one that excluded the three highest and three lowest projections (AVE-5), and one that excluded the four highest and four lowest projections (AVE-3). Based on the results of previous research, we designated the average that excluded the three highest and three lowest projections (AVE-5) as the default technique for each county. We evaluated the resulting projections by comparing them with historical population trends and with the level of population.
growth projected for the state as a whole. For counties in which AVE-5 did not provide reasonable projections, we selected the technique producing projections that fit most closely with our evaluation criteria.

For 61 counties we selected AVE-5, the average in which the three highest and three lowest projections were excluded. In the remaining six counties, we selected projections made from an individual technique or calculated a custom average (e.g., an average of two individual techniques). These include Baker, Calhoun, Gadsden, Hardee, Jackson, and Monroe counties.

We also made adjustments in several counties to account for changes in institutional populations such as university students and prison inmates. Adjustments were made only in counties in which institutional populations account for a large proportion of total population or where changes in the institutional population have been substantially different than changes in the rest of the population. In the present set of projections, adjustments were made for Alachua, Baker, Bradford, Calhoun, Columbia, DeSoto, Dixie, Franklin, Gadsden, Gilchrist, Glades, Gulf, Hamilton, Hardee, Hendry, Holmes, Jackson, Jefferson, Lafayette, Leon, Liberty, Madison, Okeechobee, Santa Rosa, Sumter, Suwannee, Taylor, Union, Wakulla, Walton, and Washington counties.

Range of County Projections

The techniques described in the previous section were used to construct the medium series of county projections. This is the series we believe will generally provide the most accurate forecasts of future population change. We also constructed low and high projections to provide an indication of the uncertainty surrounding the medium county projections. The low and high projections were based on analyses of past population forecast errors for counties in Florida, broken down by population size and growth rate. They indicate the range into which approximately three-quarters of future county populations will fall, if the future distribution of forecast errors is similar to the past distribution.

The range between the low and high projections varies according to a county’s population size in 2022 (less than 30,000; 30,000–199,999; and 200,000 or more), rate of population growth between 2012 and 2022 (less than 7.5%; 7.5–15%; 15–30%; and 30% or more), and the length of the projection horizon. Our studies have found that the distribution of absolute percent errors tends to remain fairly stable over time, leading us to believe that the low and high projections provide a reasonable range of errors for most counties. It must be emphasized, however, that the actual future population of any given county could be below the low projection or above the high projection.

For the medium series of projections, the sum of the county projections equals the state projection for each year (except for slight differences due to rounding). For the low and high series, however, the sum of the county projections does not equal the state projection. The sum of the low projections for counties is lower than the state’s low projection and the sum of the high projections for counties is higher than the state’s high projection. This occurs because potential variation around the medium projection is greater for counties than for the state as a whole.

Acknowledgement

Funding for these projections was provided by the Florida Legislature.